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ABSTRACT. The Hilbert transform allows small phase shifts

to be clearly exhibited. In theé present article we study

the properties of images obtained by Hilbert transform and
also their development as a function of different experimen-
tal parameters. The Hilbert transform is obtained by placing
a "phase knife'" in the spectral plane of a double diffraction
setup. In addition, we examine the precision with which

the phase knife must be placed and centered in the spectral
plane and the effect of width of source used. Experimental
results are provided confirming the theoretical study.

INTRODUCTION

There are a great many methods of displaying phase objects, each one /149*

having its own field of application. waever, it can be said, as a general
rule, that the study of wide objects with small phase shifts and slow

variations is difficult whatever method is used.

Some devices, such as the Twyman-Green method and interferometry in
polarized light, use two-wave interferences [1, 2, 3]. The methods
of interferdmetry using polarized light are quite sensitive. However, in
the case before us here involving slow phase variations with wide objects,

their use is limited.

Another type of method uses the properties of double diffraction setups
[8] such as phase contrast, interferometer photography or the Foucault
method [2, 4, 5]. The Hilbert transform method [6, 13] belongs to
this type.

Interferometer photography and phase contrast introduce into the spectral

plane of a double diffraction setup [7, 8] a band or a capsule which is

lCoherent Optics Laboratory of the Optics Institute of the Faculty of Sciences
of Orvay.
*Numbers in the margin indicate pagination in the foreign text.



either opaque (interferometer phdtography) or absorbing and phase shifting

(phase contrast). There is then a "skip zone" for low spatial frequencies.

In order to study the distortions at low frequencies, it is possible
to seek to use a phase knife contrast method, However, disturbing diffraction
fringes appear. In practice, the Foucault method [9, 10] is used almost

exclusively.

The Foucault method allows a very clear visualization of the wave surface
when phase shifts are great and when it is possible to keep to one geometric
argument [11]. In the case of small phase shifts, diffraction should be taken
into account and the Hilbert transform then comes into the calculations as a
natural consequence. We can prove (§1-6) that the Foucaultgram is in
reality a combination of the object and the Hilbert transform of this object.

It seems natural then to try for relief from the object at the same time keeping
only the meffective" part of the phenomenon. Moreover, the Hilbert /150
transform (T. H.) can be implemented using a source of white light [12].

The purpose of this article is to show the properties of images obtained
by the Hilbert transform and also their development as a function of different

parameters.,

The Hilbert transform is obtained by placing a "phase shift" in the spectral
plane of a double diffraction setup. In the following pages we study the
precision with which the phase knife must be prepared, the precision with
which it must be centered in the spectral plane, as well as the effect of the

width of source used.
Experimental results confirming the theoretical studies are given.

1. The Hilbert Transform in Optics

1.1. Definition of the Hilbert Transform

The Hilbert transform of an f(x) function of a variable x is mathematically
defined by:

S =tvp [T L0y, (W)

—o ¥

v.p. meaning "principal value'" in the Cauchy sense.



The expression can also be written, in the sense of distribution:
1 1
X} = — - —
) = = sz

where * means convolution product.

_ Such a convolution product can be achieved very simply by using a
double diffraction setup with coherent optics (Figure 1).

Figures 1 and 2. Flow Chart. The filter is placed
within the spectral plane P. :

A lens LO forms at S the image of a focused source SO. The plane P
perpendicular to the axis of the system at S is the spectral plane. A second

lens L forms at I the image of object plane HO'

When the function f£(x) to be processed is introduced into the plane HO
(for example, in the form of a photographic transparency of transmittance with
amplitude f(x), we obtain the Fourier transform or the F(u) spectrum of the

object f£(x) in plane P.

In the absence of a filter, a second diffraction gives in the plane II
the image of f£(x) which is perfectly identical to the object, provided we

disregard the bandpass limitation owing to the finite setting of lens L.



In order to obtain-at I the Hilbert transform of object f(x), it is
enough, since the optical filtration is a linear filtration, to place in the
spectral plane P a filter whose percussional response is 1/x, i.¢., a filter
whose transparency is the Fourier transform of 1/x, since this transformation

is reciprocal. Such a filter exists and its transmittance in amplitude is:

H(u) = i sgn(u) (2)
with
sgh(u) = +1 for u>0

~1 for u < 0.

It is also possible to express the sgn (u) function by using the Heavyside
scale unit I'(u) whose Fourier transform is known, and which provides two

relations which will be useful later on:

Iw) IL% [5(::) - ;;;]

1 (3

(- w JLE [6(1:) + ;;‘;}

TF = Fourler transform

where d¢(x) depicts the Dirac measurement and it follows that

1]

5g0 (1) = ~ I'(~ u) + [(u) 25 I
' nx

It can be seen that since the solution of the Hilbert transform is a linear
filtration, all the known properties of linear filtration are applicable.
Especially, since the filter gain is with a unitary modulus, all the energy
is found in the streak of light. Indeed, when f(x) has F(u) for the Fourier
transform and fh(x) for the Hilbert transform: '

L] o
j_m 'fn(x) | dx = j_m l F(u) sgn (1) ]’:du “

rwmu) [*du = f_sif(x) | dx.



Therefore, we can see that, contrary to Foucault methods 6f interferometer
photography phase contrast, where a part of the energy is absorbed, the total

incident energy is used here to form the image.

1.2, The Hilbert Transform Allows Visualization of Small Phase Shifts

Let us show, in a first example, how the Hiibert transform helps to

visualize small phase shifts.
Let £(x) be an object characterized by a small sinusoidal phase variation.
. 2 nx X
f(x) = expiia cosT rect )
with a <1,

Such an object is written disregarding terms of higher order:

. 2a% X
J(x) = (i + ia cos T> rect B

of which it can be shown that the Hilbert transform is:

- D
., 2qmx x<+'§

' ftl(x} = w Sm? + ;ELog (5)
T 7

D representing the width of the object field, i.e., in fact the diameter of

the lens LO of Figure 1,

Except in the case of the points located very close to

X = * R

VIS

the last term of (5) can generally be disregarded and the illumination observed

in the plane II is

E(x) = @* ;m’ ?%rf.

The phase sine wave was transformed into an amplitude sine wave.
Therefore, the optical solution of the Hilbert transform allowed the visuali-

zation of the sine wave phase object.
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It should be noted that when the limited’aperture'of the lens L is
taken into account, the amplitude in plane W is the convolution of fH(x)

through the diffraction spot d(x) of L; a response is observed in plane I:
£1(x) = £,(x)*d(x). (6)

The "infinite peaks" corresponding to x = + D/2 do not exist any longer.
In the case of x = * D/2, we notice an accumulation of light which is a

- standard phenomenon in the Foucault type setup.

1.3. The Reduction Theorem

Before -considering the case of objects more complex than the one in the
preceding paragraph, it is advisable to show that, although opéical setups are
two-dimensional, it is correct to perform a one-dimensional argument. For this
reason, we will see that the reduction theorem proven by Linfoot in the case
of the Foucault method [10] is applied to any one-dimensional filter,
particularly in the case of the Hilbert transform.

Let us reproduce in perspective (Figure 2) the flow chart of Figure 1
and disregard the limitation of the bandpass owing to the Lens L, i.e.,

that we assume this lens to have infinite size.

Let f(x,y) be the object function, the mechanism of the image formation

is written:

f(x, y) 15~ F(u, v) ~ »f(x, ¥) ' 7

u and v are the '"spatial frequencies" in the spectral plane P and F(u,v)

represents the Fourier transform of f£(x,y).

If we introduce 1nto plane P a one-dimensional fllter whose transmittance

in amplltude is a function of u alone H(u), the chart (7) becomes

f(x’ y) """"" F(u, v) x H(u) -—-~°->f(X, .V)x.y &
fllter

& h(x) 3(y) = f (%, ¥); = h(x)

(8)



The response is therefore a convolution product only dealing with the

variable x (y becomes a parameter).

This constitutes the reduction theorem allowing, when one-dimensional
screens are used, the correction of calculations with Fourier transforms to a

single dimension.

The response obtained in plane x'y' is written:

tw . ’ . V
Hx', y') = J F(u, y') €'** du v )
—w »
with oo ‘
F(u, y') = J. f(x, y)e ™= dx, ' (10)
; -® ,

Therefore, it can be seen that the value of the response r is only a
function of the value of function f on a parallel line with the axis of

the x values of y ordinate.

In the special case afythe Hilbert transform, the filter

H@) =T -~ (11)

leads to a response:
' +

o ‘ g ’D | I a2 ’
Fu, y) e du — S ¢i:'(“»y)eu " du . (12)

' y) = L -
We have assumed that the spectral plane P was not limited. This
approximation is génerally right. Nevertheless, it can lead to physical
impossibilities (infinite illumination) when we consider points located
on the edges of the‘object field defined by the diaphragm limiting the
planeIIO of Figure 2. When such a case occurs, it can always be assumed
that the spectral plane is in fact limited by a slit with width a, placed

parallel to axis v (Figure 3).

We can then repeat the same proof, replacing H(u) by:

Hn(u) == H(u) X recti-‘; (13)



where

m.iw_sl fOI’ Ml&-u—zg; (llo"’:‘a)

tg
=0 lul >3
‘The response is in this case:
rt(x',y') = r(x',y)*b(x') (14)

where . "
b(x") = TF™? [rect ——] .
g

L1 4

Figure 3. Limitation of the Spectral Plane by a Large Slit.

We are now going to be able to apply these results to the Study of

devices used to solve the Hilbert transform.

1.4. The Hilbert Transform of an Object with Uniform Transmittance

This case is important for in reality it shows location of the upper
‘boundary of the stray light owing to diffraction present in the field during

observation of any object.

Here, the object can be the aperture of digphragm D limiting the
spherical wave coming from the lens LO' If can also be the mounting of a
perfectly spherical mirror, in whose center of curvature the source S is set.
The upper boundary of the stray light will be obtained, for when a phase
object is introduced into the aperture of this diaphragm, the energy, in
its image, is picked up on the mount obeying the rule of conservation of

energy (4).



In the case of a circular diaphragnm

with

X

J (x) = rect b

_, [P,
D=2 N/{4—-—y .

For an object of another shape, D will be a specific function of x, but

the calculati

Let f(x)

centered on X

ons to be done will remain the same.

]

a transfer of the object leads to a simple transfer of the image.

The resp

where

onse in plane Il is:

ia % 1 sin px
Ry(x) = m{rtctﬁa(w H)} # e

S
]
&lF

£

Figure 4. The Illumination Along a Straight Line
with the Ordinate y Depends only on the Object Function
Along This Straight Line,

rect x/D be the object function which we will assume to be

0 for, since the Hilbert transform is linear and homogeneous,

(15)



Since the product of convolution is commutative and since the Hilbert

transform of sin pX/px [14] is known, (15) is written:

x cospx -1
Ry(x) = = rect D* ————-—-—-—-—px

which after integration suggests:

D
X+

_alp

<+ 3] +alr)s

Rn(x)a-,%(Log |
X - —
2

where Ci(x) represents the integral cosine of x defined for x > 0 by:

Ci (x) = .= j ‘iﬁ-‘d:.

®

We again find a standard result (5) which, when integral cosines /153

generally disregarded as soon as x is moved from * D/2 are not taken into
account, is reduced to:

D
i |*t3
Ri(x)aELog 5l
2
The illumination in plane 7 is then:
%+ 2
1 2 2
E(x) = — Lo
()mnz 8 | (17)
*=3

When x tends towards D/2, the development in series of Ci(x) to the

vicinity of O brings
A D
{L"%( Z'ZD'”}

:.]u .

Ry(x) =

(18)

where y is the Euler constant.

10
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a) Hilbert transform,

Observation of a Volume of Heated Air.

b) Foucault method.

Figure 6.
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Special case. The perfectly transparent circular object. It is enough

to take up D = ¥pZ/4-y? in (17). It can be seen that the isophotes are curves

such that:

‘ 2 . D? }
x + A/%E-.v’=k(x— /\/-;"—*y’)-

‘These are ellipses with axis oy. We find, to approximately one additive

constant, the result obtained by Linfoot [10] in the case of the Foucault

method.

AE

.B
2
1 , | =~ -
) Q 'D X
2 b ) 4

Figure 5. Illumination Obtained in the Case of a
Perfect Lens (or Mirror). a) Hilbert transform,
b) Foucault method,

1.5. Case of a Phase Bulge

It can be seen, according to the preceding paragraph, that the Hilbert

transform of a cosine is a sine, i.e., that an even function is changed into

an odd function and vice versa. This is very general and can be directly

deduced from formula (1) defining the Hilbert transform. It follows that

12



when we have an.object constituted by a bulge with symmetrical phase, the
latter will appear‘in the;Hilbert transform in the shape of a dark line
indicating the position of the maximum (or minimﬁm) of the phase bulge. The
blocalization is, in this case, more precise.thannin the Foucault method,
where the phase crest corrésponds to a zone of partial shadow (representation

“by glancing,illuminatidn).

In the case of an asymetrical phase bulge, the mathematical study
is more complex. The dark minimum no longer torfesponds‘exactly to the :
phase maximum, but differs very little from it. The photographs of Figﬁre
6 show a volume of hot air observed by both methods: (a) Foucault method,
(b) Hilbert transform. ' x

It can be seen that'the dark fringes are quch more contrasted in the

case of the Hllbert transform method

1.6. Comparison W1th Other Vlsuallzatlon Methods

We plan in this paragraph to compare the Hilbert transform method to
other usual methods of observation of phase distortions. Each method has in
fact its field of application, and it is interesting to see where the Hilbert
transform method is located relative to the others, for no method is indeed

'unlversal

A flrst method for studying small phase objects consists of the two-wave
interferometric method, using the Michelson interferometer, for instance.
In the case of such an interferometer adjusted to a flat hue, the illumination

is in the form:

E =1+ cos(e(x) + o)

61

interferometer. The extreme cases which can be obtained correspond either

corresponding to the difference in operation between the two arms of the

to ¢1 = 0, ¢(x) being small, in which case we then practically have E =1,

in the whole field; or to @ = m/2 in this case (cbrresponding'to the

/154

adjustment with "black'backgrOund” of the interferometer), the contrast is equal

13



to ¢(x), i.e., very slight. The contrast is defined by;
. . E, - E, v
=.—————-—-———-—
H4 E,

where E1 represents the illumination in'the region of the image characterized

by the phase distortion and EZ the illumination of the background.

In order to observe such slight contrasts, the use of a Michelson
interferometer assumes that we have reference wave surfaces, i.e., mirrors,
defined with a precision clearly able to cope with the seriousness of the
distortions to be revealed. It is not the same with differential polarization
interferometers [1, 3]. The latter five excellent images when phase
distortions have a relatively short period with regard to the size of the
object field. Nevertheless, for objects with low spatial frequencies, it is
easy to see that the conclusions are similar fo those obtained'in the case of
the Michelson interferometer., As a matter of fact, the method is no longer

applicable for it reveals the wave surface to be studied by its slopes.

The method by phase contrast consists in placing a small absorbing
screen in the center of the spectrum of the object to be studied gives
excellent results, mainly in microscopy, but cannot be applied to objects with
very low spatial frequencies because of the finite size of the phase capsule
set in the spectral plane. For the same reason, interferometer photography

(opaque capsule) cannot be applied to this type of object.

In the case of objects with low spatial frequencies, the Foucault
method is practically the only one used. We have therefore found it
appropriate to compare the latter with the Hilbert transform method and
we will see that, generally the Hilbert transform method is more sensitive

than the Foucault method.

When objects with low frequencies are studied; a very small light source
must be used. It could possibly be beneficial to use a laser. However,
the presence of dusts and stray reflections in the system causes, considering
the great temporal coherence of the laser, phenomena of interference, whose

fringes in the observation plane considerably disturb the image observed.

14



It is preferable in this case to use standard sources which can

advantageously use a wide spectrum [12].

In order to compare'bdth methods, we will assume that the khife is centered
on the diffraction spot which is usually the case, even with the Foucalt method,
during the study of low frequency distortions. 1In the case of the Foucault
method, the filter is then represented by the function I'(u) and the percus-

sional response is, according to (3):
1 i
’(")“E{é(x)"'ﬁ}}

whence

) =S+ 0} (19)

fF represents the amplitude in the Foucaultgram.

Case of a sine-wave object. A sine-wave phase object which causes a

small shift in aperture D of the object field is considered. The object
function is written:

. 2nx x
J(x) = exp (upn cos -7—') rect D
the phase shifts being small @, <1

J(x) = {l + iy cos 3_;5] rect =

D
whose Hilbert transform is:
Zax 1 x‘+-§
Ju(x) = — i@y sin Al Log (203
: )4 n : D
X - -i

which is written for points not located on the edge of the field:

. . 27x
/h00=='@05"1“;*-

15
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The illumination in the image plané is then:
. 227X :
E(x) = @2 sin® r (21)

The phase sinusoid was transformed into an amplitude sinusoid appearing
with a modulation equal to 1, at least as long as the second term of the
righthand side of expression (20) remains negligible, i.e., for points not
located at the edge of the field. Since the object is periodic, the
visibility of the phenomenon is preferentially characterized by the
"modulation" defined as the ratio:

Emax - Emln

M= Emmx + Emin

Insofar as the Foucault method is concerned, expression (19) allows
obtaining the illumination directly:

E(x) = % [1 + 2 @g sin %’ﬁ] (22)

The modulation here is proportional to 2¢b and no longer equal to 1
(we disregarded here the stray light of the system). It is this difference
which constitutes the advantage of the Hilbert transform. The continuous
background contributing to a lower modulation in the Foucault method is
due to the term £(x) in expression (19), a term which disappears in the
case of the Hilbert transform. In objection, it could be said that the
Foucault method (22) provides a variation of illumination proportional to
the phase wo, whereas the Hilbert transform (21) provides an illumination
proportional to ¢%. Hence, we are brought back to the case of interferometer
photography. Indeed, when very small phase shifts are considered, the contrast
of the Foucault image will be very slight. Moreover, the analogy between
the image obtained by the Hilbert transform and by interferometer photography

is purely formal since:

a) by the method of interferometer photography the image of low

frequency objects does not exist because of the finite size of the screen

16



introduced into the spectral plane;

b) in the case of interferometer photography,'the stray light owing
to the diffraction by the edgés of the opaque screen spreads over the whole
field and reduces the contrast considerably [5] whereas in the Hilbert
transform method, the stray 1ight,vor haze, is concentrated on the edges

of the field in shape of a luminous ring.

It can be shown more precisely that, in the Hilbert transform, the gain
in sensitivity comes with a decrease of the useful field, i.e., that the
luminous ring edging the images is larger in the case of the Hilbert

transform method than in the case of the Foucault method.

If consideration is only given the stray light of ndiffraction" just
studiéd and which 1s impossible to reduce, the Hilbert transform method
offers an infinite sensitivity in the center of the field. In practice,
there are scatterings inside optical parts as well as reflections on their
surfaces. Consequently, a certain quantity of light is distributed, in a
way which can be assumed to be uniform, in the image and contributes to

lower the contrast (or modulation) observed.

When M is the smallest modulation perceptible by the observer and Ep the
stray illumination, the smallest phase shift that the Hilbert transform
method can detect is

2E, M
@o =M

~J2E,M.

When we take, for example, M = 2% and'Ep = 10™%, it can be seen that
the Hilbert transform method is 5 times more sensitive than the Foucault

method.

Figute 5 shows, in the case of a perfectly transparent object, the

illumination according to an horizontal diameter given:
a) by the Hilbert transform,

N b) by the Foucault method with centefed knife.

17



It can be seen beginning with (17) that, in the case of the Hilbert
transform, only one third of the energy is located inside the geometric
image; whereas the Foucault method leads to the opposite result, i.e.,

two-thirds of the energy inside the geometric image [10].

2. Practical Solution of the Hilbert Transform. ThevReal'Knife

In practice, the phase knives used are not perfect. They are generally

obtained by deposit in vacuo of a dielectric layer whose thickness is

adjusted such that the phase shift is = for the working wavelength and such
that the absorption is low. On the other hand, the edge of the phase knife

does not always cut the diffraction figure exactly the middle. It should
also be noted that the illumination source used is a slit parallel to the
edge of the knife and has a specific width.

We plan in this part of the report to study the effects of various

parameters.

2.1. General Expression of the Response Given by a Phase Filter

We shall consider here the completely general case of a filter
formed by two juxtaposed spectral regions, not having the same optical
thickness and not showing the same absorption property. Let T exp(i8) be
the complex transmittance from one of the spectral regions with respect

to the other. Such a filter, used as a phase knife, has a transmittance:
H) = 1e" I~ u + ug) + Mu - uy)

where u. determines the position of the separation line of the spectral

0
regions in the spectral plane. In this case expressions (3) become:

; ~i2zugx : :
I(u - ug) II»—-—Z——-{é(x)-;';}‘ | (23)

-i2rupx

(= u + ug) 15" 5 {5(::) + ;‘3;} :

The percussional response of the filter is then:
. = {2nugx

) = 5 {(1 +1€%)8(x) — —(1 -;re")}. (24)

nx

18
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When such a filter is used to deal with an object function f(x), the

response of the system is:
R(x) = £(x)*r(x) - (25)

or again, when it is desired to take into account the bandpass, limited
toward the higher frequencies (i.e., when we consider an object point -

located near a discontinuity)

R'(X) = £(x)*r(x)*d(x).

It can be seen that exﬁression (24) covers all the possible cases of
knife setups according to the values of © and T, particularly:
free pupil
P=0

]
—

phase contrast "
Gwi"z" 74}

Hilbert transform
f =z T ] uo’“‘o
Foucault method ' |
T =0,
The expression (24) will enable us to study, as far as the Hilbert

transform is concerned, what the effects are from;:

~-- a phase shift slightly different from 7,
-- an absorption of the phase shifting region,

-~ the decentralization of a filter in the object spectrum.

This last peint will enable us to study the effect of the width of

the illumination source.

2.2. Effect of the Absorption

It is assumed that one of the two regions of the filter shows a
phase shift v and an absorption €, i.e., a t;ansmittance T =1- g, the

percussional response becomes

19



r(x)é%{cé(x)-—;i;ﬁ—-c)} | ' (26)

whence the response for a function £(x)
R() = ${ef(x) + i(2 — &) fu(x) }
.where fH(x) represents Hilbert transform of f(x).

There can then be seen in the image plane, an illumination

E(x)gua*u(xn‘+(z«é>’1f..(x>s’+2Retie(z—-'e)f(x>f;<xu} en

which takes, of course, the value ]fH(x)IZ when ¢ = 0,

When the function £(x) is even or odd, real or purely imaginary, the
illumination observed in the Hilbert transform E = ]fH(x)lz is then
symmetrical in respect to x = 0 and this symmetry is not affected by the
absorption of one of thé regions of the filter, even when this absorption

becomes total (Foucault).

In the case of the perfectly transparent object (§1.4), the intensity
obtained will be depicted by a curve intermediary between the curves
a) and b) of Figﬁre 5. The intensity will no longer be equal to zero
in the center of the field, but the presence of such an absorption will
be hardly perceptible to the eye even when using photometric measurements,

for it will possibly be merged with a haze of stray light.

The illuminations inside and outside the geometric image are
respectively ’ ‘
Eg =3[ + (2 = 0? | R{®) ]

(28)
Ep = 32 - :3)2 l Ry(x) lz

where Rl(x) is the theoretical response (16)

20



‘x——g}) (29)

R,(x)--:; Log D 4Ci(p{x+§l)+€i(p

2.3, Effect of an Error ir; Phase Shift

When the phase shift differs slightly from 7, 6 = 7 - o is ,
granted and it is possible to write the percussional response (24) in the

form

x) = {(l - ¢” ) 5(x) = ;E; (14 c"’)}

[N AR Y SN

Y
—

{iaa(x) -La- ia)}

which leads, for an f(x) function, to the response

R(x) = 4 {iaf (x) + i(2 ~ ia) fuy(x)}

and the illumination observed in the image plane is

E(x) = 4 {a*ff* + (4 + &) fufu + (30)
+ 2 Re[a(2 + i) S/}

When £(x) is even or odd, real or purely imaginary, i.e., when the
illumination observed for a phase shift strictly equal to 7 is symmetrical,
it may be ascertained that this symmetry no longer exists when the phase
shift differs from m.

As a matter of fact, the term from which we take the real part is
then odd and not purely imaginary, for ££% is odd.
It may be ascertained, therefore, that in the case of the perfectly

circular object of §1.4, the image will no longer be symmetrical.

The illuminations observed inside and outside the geometric image will

be respectively

21
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Epi=3{a®+ @+ a®) | Ry(x)[* + 2ic® R(x) }

Eue=3{(4 + a) | R0 1)

where R1(x) is still given by the expression (29).

It can be seen that the illpmination in the halo located outside of the

geometric image is, for its part, always symmetrical.

2.4, Off-centering and Width of the Source

First of all, it can be seen that,var‘questions of'luminosity, in
the double diffraction setup used, it is possible to replace the focused
source S, by a slit parallel to the direction of the phase knife placed in
the spectral plane. Indeed, according to the reduction theorem, or its
adaptation made by us at the same time considering the spectral plane
founded by a very elongate slit made parallel to the O axis, the illumination
following a straight line located on the ordinate y and parallel to Ox
(Figure 2), is only a function of the value of the object function foilcwing'
_this.straight line of ordinate y. When it is assumed that all the points
of the source are incoherent, an illumination can be seen which is the
sum of the illuminations owing to each small source component. Therefore,

it can be seen that the same result is produced whether the system is

illuminated with a focused source or with a linear source.

The elongation of the source in a direction @Aréllel to Oy does not
change anytﬁing concerning the results of filtration (in practice we must
limit ourselves to a length such that the aberrations remain negligible).
We will see what effect the width of this source has on the problem. For
this reason, we will first étudy the effect df an off-centering in the
case of an infinitely thin source; a simple integration will then enable

us to study the effect of the width of this source.

2.4.1. Off-centering of the Source

Taken up first is the case of a perfect system illuminated by a

homogeneous wave (for example, a perfect mirror working as its center.
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Using again the calculation of §1.4 the equation (15) is written,

in the casc of a slanting wave with angle o (Figure 7)

i yreat o [21))  Sin px
M{f(x)rcclot(nx)}t o

where f(x) represents the object wave. Here

.2 nax

‘f(x).séxp(l - )

Ry(x) =

(32)

(33)

o representing the slant of the wave, i.e., in fact, the position of the

source.

Figure 7. The Maximal Dip of the Object Wave

Corresponds to o (Cutting Angle).

A similar calculation to the one already performed in §1.4 leads to

the general expression of the response

Ry(x) = ;‘;?exp (i ?-1‘;—’5) [C ~iS]

with

CHv+p|xw§!+CHO*N

(34)

D
*=3

——

Cu : 3

Cilo+p|

x+§l+ﬁuvptx+

(SR

- -

2

+Cijo| x—g

x+-‘23!-'cua|
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| Sifo + p)(;: - g) + Si(g ~ p)(x - g)

Ss=- , 3 -

Si(e + P)(x + !2)) + Sli‘(a - p)(x + 'Zq)
2

+ Sia(x'+ -‘23) - :Si§(x'- -g) |

where, as previously, Si and Ci mean integral sines and cosines and where

_na 2 na, . ¢ = _ 278
ad= "i i (35)

the illumination received in observation plane IIis then:

£={ct+5). 569
‘It can be seen that S and C are respectively even and odd functions

of x and that, as a consequence, E takes again the same value when we

change x into -x. The illumination in the field is symmetrical with respect

to x = 0. This is shown by the curves of Figure 8 representing the

theoretical illuminatioﬁ as a function of the source position (calculations

performed on the Univac 1108 in collaboration of S. Slansky at the

Faculty of Sciences of Orsay).

When x tends toward z D/2, the term C takes an indeterminate value
and must be repiaced,’ at the same time us’ing the relation Ci z = log z + vy by:

C.n% @+Pl-p_ ) ey
Cilo+pl|x 'ﬂ+51 +§l

- 2l

4+ Cijol x+-§l.’
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When o tends toward zero we find again, as the amplitude, the

cxpression (16) of §1.4.

; When the bandpass is not greatly limited in the spectral plane, we
~ have found that it was possible to consider it infinite provided that we
exclude from the study the points in the direct vicinity of the edge of

the field. The expression (34) is simplified and the response becomes:

Ry(x) = Eicxp (i 2 ’;“") x

x[CiIaI x+—?l-€i[dl x-gi (38)

“ifsiofx+ 2)-sie (e~ 2))].

2.4.2, Off-centering of the Knife

Assuming that the spectral plane is unlimited in order to avoid too
burdensome mathematical expressions, we will directly calculate the response

obtained when the filter is transferred according to Ox by a quantity u

0
The percussional response of the off-centered filter is, according to
: i

(24) x) = - —e¢ i2ampx

For an object : f(x) = rcct%

where D represents the size of the field,

| oy _
D=2 -7
(cf. 81-4) in the case of a circular field, we obtain the response:

. . e
-1 X =2 ai2esgs
R{x — rect ———¢ dz
(x) = = I B

(39)

which, by integration, suggests
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R(x) =

D
X""—2~I+

i x‘+i‘?-|-cazau"°
x 2|

{CiZnuo

(40)

+i{5ignuo(;-.2‘3)-siznuo (x +§)}]

To approximately one exponential factor (which disappears when the
illuminations are considered) this epression is identical to (38). As a
matter of féct, it is the’same,thing tp transfer the filter with respect
to the spectrum or the spectrum (centered on the geometric image of the
source) with respect to the filter. A slant o of the wave corresponds
to a transfer of the spectrum in spatial frequencies and the replacement
of o by 21-ruO in (38) does lead to (40). Figure 8 shows the illumination
obtained for different penetrations of the phase knife.

- e

2SN

S
-

L L]

Figure 8. Off-centefing'of the Phase Knife by 0.2, 0.5,
1, 2 and 5 Halfwidths of the Diffraction Spot.

Case of the Foucault Method. It is only necessary to add rect x/D to the /159

expression (40) to obtain the response in the case of the Foucault method.

As a matter of fact, this answer is given by:
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Rix) = % rect % v e V2% 500) 4 %R(x)

= -‘i [;ecx% + R(x)]

considering the relation
f(x) ® g(x) e-ih-ox = cu""[f(‘x)iu""‘ ° g(x)]

therefore

Re(x) = = rectp +

-4

i .
+ i [Cl 2 Rug

+ s{suuuo'(x - ’3’) 5‘2“‘“(" * m

{

D
x + 2! Ci2nug | x (41

which is the expression obtained by Linfoot [10].
2.5. Wide Source
HLCC oourel

In order to calculate the effect of the width of the source slit it is
possible to use the general theory of partial coherency [8]. However, it is

easier to use the results obtained in the previous paragraph.

By assuming that the source slit is illuminated in a completely incoherent
way, it is possible, by simple integration, to calculate the illumination

obtained in the case of a source slit with angular width a The illumination

00
in the observation plane is then given by:

' +aol2
E=— j‘-“n E(x,a)da (42)

where E(x,a) is the expression given by (36).

The curves of Figure 9 represent the jillumination obtained for various

values of source width.
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Figure 9, Effect of the Source Width. Illuminations obtained
for the width of 0.2, 0.5, 1, 2 and 5 halfwidth of the diffrac-
tion spot,

Comment

The problem of an axial transfer of phase knife was not studied here,
for it can be considered in two different ways. As a matter of fact, when
the defocusing is considerable, the study can be carried out geometrically
and we can return to the case of the "Minimumstyahlenzeichnung"” {2, 15].
On the other hand, when the defocusing iS slight, the diffraction must
become a factor and we face the case of a slight focusing distortion. The
study of this logically belongs within the larger context of the study
of small aberrations, a chapter deserving special study.

3. Experimental Results

In this paragraph we shall provide some experimental findings confirming
the preceding study, The experimental study was carried out using a very
well polished mirror M working for a point close to its center (Figure 10).

The light source was a mercury vapor lamp, illuminating a thin slit F.
A lens 0 set behind the phase shifting blade L formed the image of the mirror
in plane II where was arranged either a photographib plate, or a glass-fiber
eyepiece connected to a photomultiplier and a plotting table allowing
scanning of the field and measuring of illumination of any point.
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Figure 10.' Experimental Setup.

Figure 11 shows the Hilbert transform of the uniformly illuminated
mirror. Figure 12 shows the recording by means of a photomultiplier of the
illumination following along one horizontal diameter of Figure 11. The
height of the peaks is slightly less than that predicted by the theoretical
study. However, this is, on one hand, owing to the integration performed
by the glass fiber whose diameter is 72u, and, on the other hand, to the
width (not equal to zero) of the slit used. Figure 12b corresponds to the
illumination observed in the absence of the phase shifting blade (it is
indeed very important to check before any measurement whether or not the /160
field is upiformly lighted, otherwise the results are worthless).

In order to study the effect of phase shifting, we used a blade formed
by a dielectric deposit produced in vacuo and whose thickness produced a
phase shift less than w. By slanting the blade more or less, it was
possible to achieve different phase shifts on both sides of the theoretical /161
value corresponding to the Hilbert transform. Figuré 13 shows the
results obtained for phase shifts varying between 164° and 185°. It can be
seen that the dissymmetry changes side when the phasé shift becomes greater
than m. The result obtained is quite consistent with the theoretical study
and shows that the filter must be made with precision, since a difference

of 5° in the phase is clearly perceptible.

Figures 14, 15, and 16 confirm the theoretical results relative to
the effect of off-centering and source width.

Figure 14 corresponds to the case of a very thin source, the knife being

centered in the Spectral plane.
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Figure 11. Hilbert Transform of a Plane and Homogeneous Wave.
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Figure 12. Photometric Scanning, a) of the Hilbert Transform,
b) of the Image without the Phase Shifting Blade.



Figure 13. a) - b) Phase Shifting Below =, c) Equal to m,
d) Above 7.

Figure 14. Hilbert Transform of a Spherical Wave for a
- Small Light Source Completely Centered.

Figures 15a, 15b, and 15c show repsectively the results obtained for
off-centering the phase knife by 0.2, 1 and 10 times the halfwidth of the
diffraction spot in the spectral plane. These results should be compared
with the theoretical curves of Figure 8.

Figures 16a and 16b show the effect of the width of source for widths
0.2 and 0.5 times the’ diffraction half spot. Progressively as the width of
the source increases, the center of the image is illuminated as predlcted by
the curves of Figure 9.
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Figure 15. Off-centering of the Phase Knife by 0.2, 1 and 10 Times the
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Figure 16. The Light Source Used has a Width 0.2 and 0.5 Times the Half
Spot of the Diffraction.
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Conclusion

After showing that it was possible, on a single basis, to solve the
Hilbert transform in optics, it was found that the setup solving this
transform contributed to the visualization of small phase distortions.

It was then endeavored to study the effect of difﬁerent parameters which
could modify the theoretical results. Indeed, it is not possible in practice
to make filters, for example, which can exactly shift phase by 180°. Thus,
it was possible to see that, when phase shifting has to be done with
precision, a slight absorption is not harmful,

J The effect of the position of the filter and width of light source

was -then studied. The experimental results obtained confirm the theoretical
forecasts. A later study will endeavor to ascertain what advantages can be
‘derived from this method for the observation of small phase distortions,
particularly in the case of geometric aberrationms. '
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